No JoinAccept or error with ESP32 + Adafruit RFM95

I’m trying to connect my ESP32 to the things network with an adafruit RFM95W radio, but I can’t get it to do just that. I’ve confirmed that it works with talking over LoRa between two ESP32 with radios and I’ve set up my draguino DL0S8 gateway on the TTN.

I’ve wired the SPI part correctly but it’s the pinmap variable and the dio pins I’m unsure if right. If it’s not that, I’ll assume there is a setup issue with regional frequencies not correct. As I can’t see anything happening on the gateway either.

The DIO pins are 2, 27 and 12 right now for testing. Only getting the message of:

104449539: EV_TXSTART
104829863: EV_JOIN_TXCOMPLETE: no JoinAccept

The pin mapping is right now:

const lmic_pinmap lmic_pins = {
    .nss = 5,
    .rxtx = LMIC_UNUSED_PIN,
    .rst = 14,
    .dio = {2, 27, 12},
};

The full code right now:

/*******************************************************************************

 * Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman

 * Copyright (c) 2018 Terry Moore, MCCI

 *

 * Permission is hereby granted, free of charge, to anyone

 * obtaining a copy of this document and accompanying files,

 * to do whatever they want with them without any restriction,

 * including, but not limited to, copying, modification and redistribution.

 * NO WARRANTY OF ANY KIND IS PROVIDED.

 *

 * This example sends a valid LoRaWAN packet with payload "Hello,

 * world!", using frequency and encryption settings matching those of

 * the The Things Network.

 *

 * This uses OTAA (Over-the-air activation), where where a DevEUI and

 * application key is configured, which are used in an over-the-air

 * activation procedure where a DevAddr and session keys are

 * assigned/generated for use with all further communication.

 *

 * Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in

 * g1, 0.1% in g2), but not the TTN fair usage policy (which is probably

 * violated by this sketch when left running for longer)!

 * To use this sketch, first register your application and device with

 * the things network, to set or generate an AppEUI, DevEUI and AppKey.

 * Multiple devices can use the same AppEUI, but each device has its own

 * DevEUI and AppKey.

 *

 * Do not forget to define the radio type correctly in

 * arduino-lmic/project_config/lmic_project_config.h or from your BOARDS.txt.

 *

 *******************************************************************************/

#include <Arduino.h>

#include <lmic.h>

#include <hal/hal.h>

#include <SPI.h>

//

// For normal use, we require that you edit the sketch to replace FILLMEIN

// with values assigned by the TTN console. However, for regression tests,

// we want to be able to compile these scripts. The regression tests define

// COMPILE_REGRESSION_TEST, and in that case we define FILLMEIN to a non-

// working but innocuous value.

//

#ifdef COMPILE_REGRESSION_TEST

# define FILLMEIN 0

#else

# warning "You must replace the values marked FILLMEIN with real values from the TTN control panel!"

# define FILLMEIN (#dont edit this, edit the lines that use FILLMEIN)

#endif

// This EUI must be in little-endian format, so least-significant-byte

// first. When copying an EUI from ttnctl output, this means to reverse

// the bytes. For TTN issued EUIs the last bytes should be 0xD5, 0xB3,

// 0x70.

static const u1_t PROGMEM APPEUI[8]={ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };

void os_getArtEui (u1_t* buf) { memcpy_P(buf, APPEUI, 8);}

// This should also be in little endian format, see above.

static const u1_t PROGMEM DEVEUI[8]={ removed  };

void os_getDevEui (u1_t* buf) { memcpy_P(buf, DEVEUI, 8);}

// This key should be in big endian format (or, since it is not really a

// number but a block of memory, endianness does not really apply). In

// practice, a key taken from ttnctl can be copied as-is.

static const u1_t PROGMEM APPKEY[16] = { removed };

void os_getDevKey (u1_t* buf) {  memcpy_P(buf, APPKEY, 16);}

static uint8_t mydata[] = "Hello, world!";

static osjob_t sendjob;

// Schedule TX every this many seconds (might become longer due to duty

// cycle limitations).

const unsigned TX_INTERVAL = 60;

// Pin mapping

const lmic_pinmap lmic_pins = {

    .nss = 5,

    .rxtx = LMIC_UNUSED_PIN,

    .rst = 14,

    .dio = {2, 27, 12},

};

void printHex2(unsigned v) {

    v &= 0xff;

    if (v < 16)

        Serial.print('0');

    Serial.print(v, HEX);

}

void do_send(osjob_t* j){

    // Check if there is not a current TX/RX job running

    if (LMIC.opmode & OP_TXRXPEND) {

        Serial.println(F("OP_TXRXPEND, not sending"));

    } else {

        // Prepare upstream data transmission at the next possible time.

        LMIC_setTxData2(1, mydata, sizeof(mydata)-1, 0);

        Serial.println(F("Packet queued"));

    }

    // Next TX is scheduled after TX_COMPLETE event.

}

void onEvent (ev_t ev) {

    Serial.print(os_getTime());

    Serial.print(": ");

    switch(ev) {

        case EV_SCAN_TIMEOUT:

            Serial.println(F("EV_SCAN_TIMEOUT"));

            break;

        case EV_BEACON_FOUND:

            Serial.println(F("EV_BEACON_FOUND"));

            break;

        case EV_BEACON_MISSED:

            Serial.println(F("EV_BEACON_MISSED"));

            break;

        case EV_BEACON_TRACKED:

            Serial.println(F("EV_BEACON_TRACKED"));

            break;

        case EV_JOINING:

            Serial.println(F("EV_JOINING"));

            break;

        case EV_JOINED:

            Serial.println(F("EV_JOINED"));

            {

              u4_t netid = 0;

              devaddr_t devaddr = 0;

              u1_t nwkKey[16];

              u1_t artKey[16];

              LMIC_getSessionKeys(&netid, &devaddr, nwkKey, artKey);

              Serial.print("netid: ");

              Serial.println(netid, DEC);

              Serial.print("devaddr: ");

              Serial.println(devaddr, HEX);

              Serial.print("AppSKey: ");

              for (size_t i=0; i<sizeof(artKey); ++i) {

                if (i != 0)

                  Serial.print("-");

                printHex2(artKey[i]);

              }

              Serial.println("");

              Serial.print("NwkSKey: ");

              for (size_t i=0; i<sizeof(nwkKey); ++i) {

                      if (i != 0)

                              Serial.print("-");

                      printHex2(nwkKey[i]);

              }

              Serial.println();

            }

            // Disable link check validation (automatically enabled

            // during join, but because slow data rates change max TX

        // size, we don't use it in this example.

            LMIC_setLinkCheckMode(0);

            break;

        /*

        || This event is defined but not used in the code. No

        || point in wasting codespace on it.

        ||

        || case EV_RFU1:

        ||     Serial.println(F("EV_RFU1"));

        ||     break;

        */

        case EV_JOIN_FAILED:

            Serial.println(F("EV_JOIN_FAILED"));

            break;

        case EV_REJOIN_FAILED:

            Serial.println(F("EV_REJOIN_FAILED"));

            break;

        case EV_TXCOMPLETE:

            Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));

            if (LMIC.txrxFlags & TXRX_ACK)

              Serial.println(F("Received ack"));

            if (LMIC.dataLen) {

              Serial.print(F("Received "));

              Serial.print(LMIC.dataLen);

              Serial.println(F(" bytes of payload"));

            }

            // Schedule next transmission

            os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send);

            break;

        case EV_LOST_TSYNC:

            Serial.println(F("EV_LOST_TSYNC"));

            break;

        case EV_RESET:

            Serial.println(F("EV_RESET"));

            break;

        case EV_RXCOMPLETE:

            // data received in ping slot

            Serial.println(F("EV_RXCOMPLETE"));

            break;

        case EV_LINK_DEAD:

            Serial.println(F("EV_LINK_DEAD"));

            break;

        case EV_LINK_ALIVE:

            Serial.println(F("EV_LINK_ALIVE"));

            break;

        /*

        || This event is defined but not used in the code. No

        || point in wasting codespace on it.

        ||

        || case EV_SCAN_FOUND:

        ||    Serial.println(F("EV_SCAN_FOUND"));

        ||    break;

        */

        case EV_TXSTART:

            Serial.println(F("EV_TXSTART"));

            break;

        case EV_TXCANCELED:

            Serial.println(F("EV_TXCANCELED"));

            break;

        case EV_RXSTART:

            /* do not print anything -- it wrecks timing */

            break;

        case EV_JOIN_TXCOMPLETE:

            Serial.println(F("EV_JOIN_TXCOMPLETE: no JoinAccept"));

            break;

        default:

            Serial.print(F("Unknown event: "));

            Serial.println((unsigned) ev);

            break;

    }

}

void setup() {

    Serial.begin(115200);

    Serial.println(F("Starting"));

    #ifdef VCC_ENABLE

    // For Pinoccio Scout boards

    pinMode(VCC_ENABLE, OUTPUT);

    digitalWrite(VCC_ENABLE, HIGH);

    delay(1000);

    #endif

    // LMIC init

    os_init();

    // Reset the MAC state. Session and pending data transfers will be discarded.

    LMIC_reset();

    // Start job (sending automatically starts OTAA too)

    do_send(&sendjob);

}

void loop() {

    os_runloop_once();

}

The SPI and DIO values in the pin map must exactly match the physical wiring.

Not sure where that code comes from (your source is not mentioned) but it is useful to use one of the standard examples included with the LMIC library (ttn-otaa.ino) or even better the external example LMIC-node.

The LMIC documentation provides information about regional settings and where to configure this.

Don’t just assume. Better verify and read the documentation.

In addition you can also find a ton of useful information on The Things Network forum.

If everything is connected and configured correctly and LoRaWAN keys for the node are entered correctly (and in correct lsb/msb order) you should at least be able to see join requests arriving in the TTN gateway console.